skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taras, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Resolving fine details of astronomical objects provides critical insights into their underlying physical processes. This drives in part the desire to construct ever-larger telescopes and interferometer arrays and to observe at shorter wavelengths to lower the diffraction limit of angular resolution. Alternatively, one can aim to overcome the diffraction limit by extracting more information from a single telescope’s aperture. A promising way to do this is spatial-mode-based imaging, which projects a focal-plane field onto a set of spatial modes before detection, retaining focal-plane phase information that is crucial at small angular scales but typically lost in intensity imaging. However, the practical implementation of mode-based imaging in astronomy from the ground has been challenged by atmospheric turbulence. Here, we present the first on-sky demonstration of a subdiffraction-limited mode-based measurement, using a photonic-lantern-fed spectrometer installed on the Subaru Coronagraphic Extreme Adaptive Optics instrument at the Subaru Telescope. We introduce a novel calibration strategy that mitigates time-varying wave-front error and misalignment effects, leveraging simultaneously recorded focal-plane images and using a spectral-differential technique that self-calibrates the data. Observing the classical Be starβCMi, we detect spectral-differential spatial signals and reconstruct images of its Hα-emitting disk. We achieve an unprecedented Hαphotocenter precision of ∼50μas in about 10 minutes of observation with a single telescope, measuring the disk’s nearside–farside asymmetry for the first time. This work demonstrates the high precision, efficiency, and practicality of photonic mode-based imaging techniques in recovering subdiffraction-limited information, opening new avenues for high-angular-resolution spectroscopic studies in astronomy. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  2. Sallum, Stephanie; Sanchez-Bermudez, Joel; Kammerer, Jens (Ed.)
  3. Sallum, Stephanie; Sanchez-Bermudez, Joel; Kammerer, Jens (Ed.)
  4. Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)